Abstract

Accurate assessment of tumor margins with specific, non-invasive imaging would result in the preservation of healthy tissue and improve long-term local tumor control, thereby reducing the risk of recurrence. Overexpression of epidermal growth factor receptor (EGFR) has been used in other cancers as an imaging biomarker to identify cancerous tissue. We hypothesize that expression of EGFR in ameloblastomas may be used to specifically visualize tumors. The aims of this study are to measure the specificity of radiolabeled 89Zr-panitumumab (an EGFR antibody) in vivo using patient-derived xenograft (PDX) models of ameloblastoma and positron emission tomography/computed tomography (PET/CT) scans. In PDX of ameloblastomas from four patients (AB-36, AB-37, AB-39 AB-53), the biodistribution of 89Zr-panitumumab was measured 120 h post-injection and was reported as the injected dose per gram of tissue (%ID/g; AB-36, 40%; AB-37, 62%; AB-39 18%; AB-53, 65%). The radiolabeled %ID/g was significantly greater in tumors of 89Zr-panitumumab-treated mice that did not receive unlabeled panitumumab as a blocking control for AB-36, AB-37, and AB-53. Radiolabeled anti-EGFR demonstrates specificity for ameloblastoma PDX tumor xenografts, we believe 89Zr-panitumumab is an attractive target for pre-surgical imaging of ameloblastomas. With this technology, we could more accurately assess tumor margins for the surgical removal of ameloblastomas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.