Abstract

AbstractAccurate geochronologies are crucial for reconstructing the sensitivity of brackish and estuarine environments to dynamic external impacts of the past. Radiocarbon (14C) dating is commonly used for palaeoclimate studies, but its application in brackish environments is severely limited by an inability to quantify spatiotemporal variations in 14C reservoir age, or R(t), due to dynamic interplay between river runoff and marine water. Additionally, old carbon effects and species‐specific behavioral processes also influence 14C ages. Using the world's largest brackish water body (the estuarine Baltic Sea) as a test bed, combined with a comprehensive approach that objectively excludes both old carbon (using GIS) and species‐specific 14C effects, we demonstrate the use of 87Sr/86Sr ratios for quantifying R(t) in ubiquitous mollusc shell material, leading to almost an order of magnitude increase in Baltic Sea 14C geochronological precision over the current state of the art. We propose that similar proxy methods can be developed for other brackish water bodies worldwide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.