Abstract

BackgroundIt is important to explore effective treatment for liver cancer. Photodynamic therapy (PDT) is a novel technique to treat liver cancer, but its clinical application is obstructed by limited depth of visible light penetration into tissue. The near-infrared (NIR) photosensitizer is a potential solution to the limitations of PDT for deep tumor tissue treatment.PurposeWe aimed to investigate 808 nm NIR light-excited UCNPs@mSiO2-Ce6-GPC3 nanocomposites for PDT in liver cancer.MethodsIn our study, 808 nm NIR light-excited upconversion nanoparticles (UCNPs) were simultaneously loaded with the photosensitizer chlorin e6 (Ce6) and the antibody glypican-3 (GPC3), which is overexpressed in hepatocellular carcinoma cells. The multitasking UCNPs@mSiO2-Ce6-GPC3 nanoparticles under 808 nm laser irradiation with enhanced depth of penetration would enable the effective targeting of PDT.ResultsWe found that the UCNPs@mSiO2-Ce6-GPC3 nanoparticles had good biocompatibility, low toxicity, excellent cell imaging in HepG2 cancer cells and high anti-tumor effect in vitro and in vivo.ConclusionWe believe that the utilization of 808 nm NIR excited UCNPs@mSiO2-Ce6-GPC3 nanoparticles for PDT is a safe and potential therapeutic option for liver cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.