Abstract
The interaction of a wave with a rubblemound breakwater results in a complex flow field which is both nonlinear and turbulent, particularly within a region close to the surface of the structure. Numerical models describing internal flow in a rubblemound breakwater are becoming increasingly important, particularly as the influence of scale effects on internal flow in physical hydraulic models are becoming understood as important. A number of numerical models to predict the internal breakwater flow kinematics have been produced in the past two decades. This paper provides a review of the state-of-the-art of numerical modelling of wave interaction with rubblemound breakwaters. Details of the theoretical development and the resulting numerical solution techniques are presented. Methods for incorporating secondary effects such as two phase (air-water) flow, inertia, and unbalanced boundary conditions are discussed. Limitations of the models resulting from the validity of the assumptions made in order to effect a numerical solution are discussed. SYNOPSIS INTRODUCTION SUMMARY OF PREVIOUS INVESTIGATIONS SUMMARY OF THEORETICAL ANALYSES SOLUTION ANOMALIES CONSIDERATION OF INERTIAL EFFECTS EFFECT OF ENTRAINED AIR MOVEMENT OF THE OUTCROP POINT SUMMARY AND CONCLUSION REFERENCES
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.