Abstract

Three derivatives of 7-hydroxy-2-phenyl-4H-chromen-4-one (7-hydroxyflavone), containing chloro, methoxy, and dimethylamino substituents at position 4', were synthesized and investigated from the view of their ground-state and electronically excited-state behavior. Spectral and fluorescent properties in a wide range of pH/H0, thermodynamics of the ground and S1 states, and kinetics of the excited-state deactivation of the compounds were investigated by means of steady-state electronic absorption, steady-state, and time-resolved fluorescent spectroscopies as well as by computational methods. The results are rationalized from the point of view of the substituent effect. In spite of a similar structure and the same acid-base centers, the compounds strongly differ in fluorescence characteristics as well as in the dependence of fluorescent properties on pH/H0 of the media. Various protolytic/tautomeric forms of the compounds investigated absorb light in the 300-500 nm range and fluoresce in the whole visible range of spectra. The electron-releasing substituents at position 4' of 7-hydroxyflavone immensely affect spectral properties as well as the excited-state thermodynamics and kinetics, whereas the electron-withdrawing ones cause minimal effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.