Abstract

ABSTRACT IMPACT: Our research would be the first therapeutic to both prevent and treat osteoarthritis - helping 27 millions U.S. citizens alone immediately. OBJECTIVES/GOALS: Our objective is to conjugate hyaluronic acid binding peptides (HABP) to anionic hollow nanoparticle (hNP), and allowing the HABP-hNP complex to penetrate into osteoarthritic cartilage, bind to exposed HA, prevent further degradation, and restore the compressive strength of articular cartilage. METHODS/STUDY POPULATION: N-isopropyl acrylamide, 2-acrylamindo-2-methyl-1-propanesulfonic acid, N,N’-bis(acryoyl)cystamine, and Acrylic Acid, in fluorescent batches rhodamine b isothiocyanate (RBITC), were polymerized via precipitation reaction. HA binding peptide, GAHWQFNALTVRGSG-Hydrazide (GAH-Hyd), was covalently bonded to the hNP using DMTMM chemistry. The reaction was halted by diluting the solution 10:1 with milliQ water and purified using tangential flow filtration. The dynamic viscosity of the six treatments were analyzed in a 70 kDa HA. Using a rheometer (Discovery HR-3) with a 20 mm parallel plate geometry, TA Instruments, New Castle, DE), a frequency sweep (0.01 -1000 Hz, 2.512 Pa) was conducted to measure the storage modulus of each solution. RESULTS/ANTICIPATED RESULTS: GAH-Hyd was successfully conjugated to the surface of the hNP and zeta-potential shows a significant increase in surface charge from -21.41 mV for unconjugated hNP to -8.94 mV for 65 GAH conjugated hNP, confirming conjugation. The hNPs need 65 ±10 GAH per nanoparticle to significantly bind to HA, shown by increasing the dynamic viscosity of the solution. The minimum concentration of 65 GAH-hNP required to significantly bind to HA is 313 µM. These data from our study display the ability to functionalized the surface of polymeric hNPs with site specific peptides and their ability to bind to diseased tissue. We expect the GAH-hNP system will restore the compressive strength of OA cartilage and prevent further HA degradation in ex vivo aggrecan depleted cartilage plugs. DISCUSSION/SIGNIFICANCE OF FINDINGS: Binding to exposed HA within the ECM of cartilage protects the HA from further degradation, halting the progression of OA. 65 GAH-hNP binds to HA at a 313 µM. Our system can be translated and used to treat a multitude of conditions by conjugating tissue specific peptides to the surface of our hNPs and delivery site specific therapeutics to diseases tissue.

Highlights

  • IMPACT: This research will aid clinical and policy solutions on lessening the vast health disparities and overall access issues for low-income, type 1 diabetes patients

  • OBJECTIVES/GOALS: Our objective is to conjugate hyaluronic acid binding peptides (HABP) to anionic hollow nanoparticle, and allowing the HABP-hNP complex to penetrate into osteoarthritic cartilage, bind to exposed HA, prevent further degradation, and restore the compressive strength of articular cartilage

  • RESULTS/ANTICIPATED RESULTS: GAH-Hyd was successfully conjugated to the surface of the hNP and zeta-potential shows a significant increase in surface charge from -21.41 mV for unconjugated hNP to -8.94 mV for 65 GAH conjugated hNP, confirming conjugation

Read more

Summary

Introduction

IMPACT: This research will aid clinical and policy solutions on lessening the vast health disparities and overall access issues for low-income, type 1 diabetes patients. OBJECTIVES/GOALS: Our objective is to conjugate hyaluronic acid binding peptides (HABP) to anionic hollow nanoparticle (hNP), and allowing the HABP-hNP complex to penetrate into osteoarthritic cartilage, bind to exposed HA, prevent further degradation, and restore the compressive strength of articular cartilage. The hNPs need 65 ±10 GAH per nanoparticle to significantly bind to HA, shown by increasing the dynamic viscosity of the solution.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.