Abstract
This chapter provides a brief description of each of the techniques that should be included in a full-capabilities predictive maintenance program for typical plants. A variety of technologies are used as part of a comprehensive predictive maintenance program. Because mechanical systems, or machines, account for most plant equipment, vibration monitoring is generally the key component of most predictive maintenance programs. However, vibration monitoring cannot provide all of the information required for a successful predictive maintenance program. This technique is limited to monitoring the mechanical condition and not other critical parameters required to maintain reliability and efficiency of machinery. It is a very limited tool for monitoring critical process and machinery efficiencies and other parameters that can severely limit productivity and product quality. Therefore, a comprehensive predictive maintenance program must include other monitoring and diagnostic techniques. These techniques include vibration monitoring, thermography, tribology, process parameters, visual inspection, ultrasonics, and other nondestructive testing techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.