Abstract

In the present work, the oxidation and spin state of Fe and the local structure around Fe in the supercapacitor birnessite with different contents of the Fe dopant were investigated using Mossbauer spectroscopy. It was found that Fe ions were exclusively present as high spin Fe3+ in octahedral coordination with about 70% iron occupying the Mn3+ positions and about 30% iron occupying the Mn4+ positions in the [MnO6] octahedra for all Fe-doped birnessite samples. Based on these new findings, the trend of typical cell parameters, selected bond lengths of the Fe-doped birnessites and their corresponding quadrupole splittings in the Mossbauer spectra were well explained by considering both the weakened Jahn–Teller effect during the replacement of Mn3+ by Fe3+ and the expansion of octahedra during the replacement of Mn4+ by Fe3+. The present work offers some new insights into the understanding of the mechanism of the heterogeneous atomic doping on the crystal structure of birnessite, with importance for both mineralogy and material science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.