Abstract

Interspecies nuclear transfer (NT) is a very important tool for study of nuclear–cytoplasm interactions and somatic cell nucleus reprogramming. We constructed, by means of a zona-free method, NT embryos using bovine (Bo) or porcine (Po) oocytes matured in vitro and bovine fetal fibroblasts (BFF), pig adult fibroblasts (PAF), and pig fetal (PFF) green fluorescent protein (GFP)-positive fibroblasts. Constructs were fused by a double pulse of DC 1.2 kV/cm for 30 µs. At 3–4 h post-fusion, embryos with Bo were activated by 5 µM ionomycin for 4 min and incubated in 2 mM 6-DMAP in SOFaa for 4 h, whereas embryos with Po were activated by a double pulse of DC 1.2 kV/cm for 30 µs in the fusion medium with 1 mM Ca++ and incubated in SOFaa containing 5 µg/mL cytochalasin B in for 4 h. Embryos were cultured in SOFaa in 5% CO2, 5% O2 at 38.5°C. The NT embryo development and GFP expression (D7) were checked. Our results (Table 1) showed that the blastocyst rate of control bovine and pig embryos was 74% and from 20 to 44%, respectively. ‘Pig fibroblasts into Bo’ embryos were arrested at the 8–21-cell stage while ‘BFF into Po’ embryos were arrested at the 4-cell stage. About 84% of ‘PFF GFP+ into Bo’ NT embryos started to express GFP, but only 3.2% (3/95) of the embryos were able to progress through the 16-cell stage suggesting insufficient embryonic genome activation. Overall significantly more ‘Pig fibroblast into Bo’ embryos were able to progress through the 4-cell stage pig developmental block than normal pig NT embryos (57.8 ± 3.5% vs. 47.1 ± 1.3%; t-test, P = 0.02). This study shows that early embryo development is driven by recipient cytoplasm up to the stage when genome activation should occur. The arrest of interspecies NT embryos at the stage of embryonic genome activation suggests that this developmental step is impaired. Table 1. Interspecies NT embryo development This work was funded by grant ISS CS 11 and ESF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.