Abstract

Potential positron emission tomography (PET) ligands with low picomolar affinity at the nicotinic acetylcholine receptor (nAChR) and with lipophilicity (log D) ranging from -1.6 to +1.5 have been synthesized. Most members of the series, which are derivatives of 5-substituted-6-halogeno-A-85380, exhibited a higher binding affinity at alpha4beta2-nAChRs than epibatidine. An analysis, by molecular modeling, revealed an important role of the orientation of the additional heterocyclic ring on the binding affinity of the ligands with nAChRs. The existing nicotinic pharmacophore models do not accommodate this finding. Two compounds of the series, 6-[(18)F]fluoro-5-(pyridin-3-yl)-A-85380 ([(18)F]31) and 6-chloro-3-((2-(S)-azetidinyl)methoxy)-5-(2-[(18)F]fluoropyridin-5-yl)pyridine) ([(18)F]35), were radiolabeled with (18)F. Comparison of PET data for [(18)F]31 and 2-[(18)F]FA shows the influence of lipophilicity on the binding potential. Our recent PET studies with [(18)F]35 demonstrated that its binding potential values in Rhesus monkey brain were ca. 2.5 times those of 2-[(18)F]FA. Therefore, [(18)F]35 and several other members of the series, when radiolabeled, will be suitable for quantitative imaging of extrathalamic nAChRs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.