Abstract

The enzymatic breakdown of phospholipids to form arachidonic acid and its subsequent conversion to metabolites produced via the lipoxygenase pathway in anterior pituitary cells may contribute to the process of PRL release. The incubation of primary cultures of pituitary cells from female rats with the lipoxygenase product 5-hydroxyeicosatetraenoic acid (5-HETE; 5-100 microM) significantly increased PRL release in a concentration-dependent manner. The release of PRL induced by 45 microM 5-HETE was completely blocked by 1 microM dopamine. Penfluridol, an agent that binds to and inactivates several Ca+2-binding proteins, including calmodulin, decreased (P less than 0.01) basal and 5-HETE-stimulated PRL release. Similarly, 50 microM D-600, a Ca+2 channel antagonist, significantly (P less than 0.01) reduced basal and 5-HETE-induced PRL release. BW755c or RHC 80267, both of which reduce the production of arachidonic acid metabolites, including 5-HETE, significantly reduced basal PRL release. The inhibitory effects of BW755c and RHC 80267 on PRL release, however, could be overcome by the addition of 5-HETE. In conclusion, 5-HETE or similar lipoxygenase metabolites may be important cellular components in the process of PRL release, and the inhibitory action of dopamine on PRL would seem to be mediated at some step after stimulation by these metabolites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.