Abstract

ABSTRACT Cohabitation with a partner undergoing chronic pain induces pain hypersensitivity. Among a lot of other neurochemical pathways, the serotonin (5-HT) role, specifically the 5-HT3 receptor (5-HT3R), in the amygdala has never been evaluated in this model. Here we studied the effects of the amygdala’s chemical inhibition, its neuronal activation pattern, and 5-HT, 5-HIAA, and 5-HT turnover within the amygdala. Furthermore, the systemic and intra-amygdala 5-HT3R activation and blockade in mice that cohabited with a conspecific subjected to chronic constriction injury were investigated. Male Swiss mice were housed in partners for 28 days. The dyads were divided into two groups on the 14th day: cagemate nerve constriction (CNC) and cagemate sham (CS). On the 24th day, cagemates underwent a stereotaxic surgery (when necessary) and, on the 28th day, they were evaluated on the writhing test. The amygdala inactivation promotes pain-hypersensitivity behaviors in groups and dyads; cohabitation with a partner with chronic pain did not change FosB-labeled cells in the amygdala’s nucleus and increases 5-HT turnover in cagemates. Systemic and intra-amygdala 5-HT3R activation attenuated and enhanced the number of writhes, respectively. In contrast, 5-HT3R blockade reduced hypersensitivity pain response. Results suggest the involvement of amygdala serotonergic signaling via 5-HT3R in empathy-like behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.