Abstract

The hyaluronic acid (HA) hydrogel array was employed for immobilization of 5-fluorouracil (5-FU), and the electrospun bilayer (hydrophilic: polyurethane/pluronic F-127 and hydrophobic: polyurethane) membrane was used to support the HA hydrogel array as a patch. To visualize the drug propagating phenomenon into tissues, we experimentally investigated how FITC-BSA diffused into the tissue by applying hydrogel patches to porcine tissue samples. The diffusive phenomenon basically depends on the FITC-BSA diffusion coefficient in the hydrogel, and the degree of diffusion of FITC-BSA may be affected by the concentration of HA hydrogel, which demonstrates that the high density of HA hydrogel inhibits the diffusive FITC-BSA migration toward the low concentration region. YD-10B cells were employed to investigate the release of 5-FU from the HA array on the bilayer membrane. In the control group, YD-10B cell viability was over 98% after 3 days. However, in the 5-FU-immobilized HA hydrogel array, most of the YD-10B cells were not attached to the bilayer membrane used as a scaffold. These results suggest that 5-FU was locally released and initiated the death of the YD-10B cells. Our results show that 5-FU immobilized on HA arrays significantly reduces YD-10B cell adhesion and proliferation, affecting cells even early in the cell culture. Our results suggest that when 5-FU is immobilized in the HA hydrogel array on the bilayer membrane as a drug patch, it is possible to control the drug concentration, to release it continuously, and that the patch can be applied locally to the targeted tumor site and administer the drug in a time-stable manner. Therefore, the developed bilayer membrane-based HA hydrogel array patch can be considered for sustained release of the drug in biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.