Abstract

Indirubin 3′-oxime (Indox (1b)) suppresses cancer cell growth (IC50: 15μM towards HepG2 cells) and inhibits cell cycle-related kinases such as cyclin-dependent kinases and glycogen synthase kinase-3β. We have previously reported that the conjugation of 1b with oxirane, a protein-reactive component, enhanced the cytotoxic activity of Indox as determined from the IC50 value (1.7μM) of indirubin 3′-(O-oxiran-2-ylmethyl)oxime (Epox/Ind (1c)). Here we prepared Epox/Ind derivatives with one or two halogen atoms or a methoxy group on the aromatic ring(s) of an Indox moiety and studied the structure-activity relationships of the substituent(s). We found that bromine-substitution at the 5-position on 1c or any Epox/Ind derivative(s) having bromine on the aromatic ring except Epox/6′-Br-Ind was efficient to improving anticancer activity. Of the 22 Epox/Ind derivatives, 5-bromoindirubin 3′-(O-oxiran-2-ylmethyl)oxime (Epox/5-Br-Ind (2c)) was the best anticancer agent in both short- (24h) (IC50: 0.67μM) and extended-duration (72h) cultures. The high anticancer activity of 2c was partly due to it being a poor substrate and a suicide inhibitor for epoxide hydrolase as epoxide hydrolase was identified as the enzyme primarily responsible for the metabolism of 2c.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.