Abstract

Complex gravitational phenomena can require terrestrial remote sensing solutions for monitoring their possible evolution, especially when in situ installations are not possible. This study merges terrestrial radar interferometry (TRI) and image cross-correlation (ICC) processing, which can detect complementary motion components, to obtain a 3-dimensional system able to measure the actual surface motion field of a pre-defined target. The coupling can be carried out on data acquired from different installations of the devices, and by applying specific transformations of the related coordinate systems. The data georeferencing is a critical issue that affects the correct spatial correspondence of the data and a new approach for georeferencing radar data is proposed. The result is a spatio-temporal (3 + 1-dimensional) high-resolution representation of the surface kinematics. The presented method has been tested for the measurement of the Planpicieux glacier surface kinematics (NW of Italy). The error analysis revealed a millimeter accuracy and precision of the measurement and a georeferencing uncertainty of a few metres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.