Abstract

Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at −18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques.

Highlights

  • Folding, curling, expansion and various other programmed shape changes after they are submerged in water12,13. 4D active composite materials are developed by printing shape memory polymer fibers in an elastomeric matrix achieving a programmed action through the stimulation of the shape memory fibers[14,15]

  • The key objective is to utilize soybean oil epoxidized acrylate as a liquid resin for fabricating 3D biomedical scaffolds and evaluate their biocompatibility with human bone marrow mesenchymal stem cells which have great potential for various functional tissue applications (Fig. 1)

  • Soybean oil epoxidized acrylate is liquid at room temperature, and doesn’t need any heating and/or reactive diluents for stereolithography

Read more

Summary

Introduction

Folding, curling, expansion and various other programmed shape changes after they are submerged in water12,13. 4D active composite materials are developed by printing shape memory polymer fibers in an elastomeric matrix achieving a programmed action through the stimulation of the shape memory fibers[14,15]. Folding, curling, expansion and various other programmed shape changes after they are submerged in water. The time-dependent shape and/or functional changes realized with 4D fabrication techniques have shown great application potential for biomedical scaffolds[16]. The key objective is to utilize soybean oil epoxidized acrylate as a liquid resin for fabricating 3D biomedical scaffolds and evaluate their biocompatibility with human bone marrow mesenchymal stem cells (hMSCs) which have great potential for various functional tissue applications (Fig. 1). To the best of our knowledge, we are the first to apply soybean oil epoxidized acrylate as an ink for fabricating biomedical scaffolds and evaluating their cytocompatibility. The fabricated scaffolds possess excellent shape memory effect, facilitating 4D functionality. This research significantly advances the development of biomedical scaffolds with renewable plant oils and 3D fabrication techniques

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.