Abstract

Background Pseudomonas aeruginosa is intrinsically resistant to many commonly used antimicrobials, and carbapenems are often required to treat infections. We describe the crude incidence, epidemiology, and molecular characteristics of carbapenem-resistant P. aeruginosa (CRPA) in the EIP catchment area.MethodsFrom August 1, 2016 through July 31, 2018, we conducted laboratory- and population-based surveillance for CRPA in selected areas in eight sites. We defined a case as the first isolate of P. aeruginosa resistant to imipenem, meropenem, or doripenem from the lower respiratory tract, urine, wounds, or normally sterile sites identified from a resident of the EIP catchment area in a 30-day period. Patient charts were reviewed. Analysis excluded cystic fibrosis patients. A random sample of isolates was collected. Real-time PCR to detect carbapenemase genes and whole-genome sequencing are in progress.ResultsWe identified 4,209 cases in 3373 patients. The annual incidence was 14.50 (95% CI, 14.07–14.94) per 100,000 persons and varied among sites from 4.89 in OR to 25.21 in NY. The median age of patients was 66 years (range: < 1–101), 42.1% were female, and nearly all (97.5%) had an underlying condition. Most cases were identified from urine (42.8%) and lower respiratory tract (35.7%) cultures. Nearly all (93.3%) occurred in patients with inpatient healthcare facility stay, surgery, chronic dialysis, or indwelling devices in the prior year; death occurred in 7.2%. Among 937 isolates tested, 847 (90.4%) underwent PCR; six (0.7%) harbored a carbapenemase, from four sites (CO, MD, NY, and OR): blaVIM (3), blaKPC (2), and blaIMP (1). Of 612 (65.3%) isolates sequenced, the most common ST types were ST235 (9.2%) and ST298 (4.9%).ConclusionCarbapenemases were rarely the cause of carbapenem resistance but were found at EIP sites with high and low CRPA incidence. The emergence of mobile carbapenemases in P. aeruginosa has the potential to increase the incidence of CRPA. Increased detection and early response to carbapenemase-producing CRPA is key to prevent further emergence.Disclosures All authors: No reported disclosures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.