Abstract

AbstractMethanol is a convenient liquid fuel for fuel cells, but is not converted as efficiently into electrical energy as hydrogen. This is due to the slower reaction of methanol at the anode as well as to methanol permeation.When optimizing the direct methanol fuel cell (DMFC) process, methanol concentration and flow rate, current density and air flow rate must also be taken into account. A high methanol concentration facilitates dynamic operation up to high current densities, but also leads to high methanol permeation. The air flow rate must be adjusted so that the cooling effect of evaporating water is balanced by the heat produced in the cell. Therefore, a cell with low permeation must be operated at low air flow rates to achieve autothermal operation at elevated temperatures, which can in turn reduce cell performance. For each current density, there is an optimum amount of methanol feed.In this paper, we show how these effects have to be balanced using air‐flow rates calculated to ensure thermal equilibrium. It is possible to achieve electrical cell efficiencies of up to 44% in a self‐heating DMFC. Another small increase in efficiency can be achieved by using humidified air at the cathode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.