Abstract

To meet the needs of terahertz imaging and communication, a 420-GHz on-chip antenna (OCA) with high gain and high radiation efficiency is designed using a standard 55 nm CMOS technology. In the proposed OCA structure, the substrate integrated waveguide (SIW) antenna forms a back cavity to suppress the surface waves and separate the radiation aperture from the low-resistivity substrate. To increase the efficiency of OCA, a single-layer quartz superstrate is proposed. An analytical model to calculate the radiation efficiency is presented, and a detailed design approach is described. The proposed antenna is simulated using Ansoft HFSS. The simulated antenna has a maximum gain of 4.9 dBi and a radiation efficiency of 76.27%. The bandwidth of S11 below −10 dB is 44 GHz. The OCA has good performance and can be widely used in terahertz imaging and communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.