Abstract
Parkinson's disease (PD) biomarkers are needed to enhance therapeutics research and to understand PD pathogenesis. Methods that simultaneously measure hundreds of small molecular-weight compounds-metabolomic analysis-"fingerprint" disease-specific alterations in individual compounds or metabolic pathways. Beyond a nontargeted search for PD biomarkers, we hypothesized that PD cerebrospinal fluid would show increased formation of the excitotoxin 3-hydroxykynurenine and diminished concentration of the antioxidant glutathione. Cerebrospinal fluid was collected at <4 hours postmortem from 48 pathologically-verified PD subjects and 57 comparably-aged controls. Assays involved ultra-high-performance liquid and gas chromatography linked to mass spectrometry. We used univariate techniques to determine fold-changes in concentrations of biochemicals; false-discovery rates were calculated to exclude spurious findings. Data was modeled using a Support Vector Machine for analyzing compounds selected by Welch's t test. Classification accuracy was determined by cross-validation. Of 243 structurally-identified biochemicals,19 compounds differentiated PD from controls at a 20% false-discovery level. In PD, mean 3-hydroxykynurenine concentration was increased by one-third, and mean oxidized glutathione was decreased by 40% (for each, P < .01). Four of the 19 compounds differentiating PD from controls were N-acetylated amino acids, suggesting a generalized alteration in N-acetylation activity. The Support Vector Machine classification model distinguished between groups at 83% sensitivity and 91% specificity for the learning data, and at 65% and 79% from cross-validation. In this study, the first for metabolomic profiling of PD cerebrospinal fluid, we found several novel biomarkers and offer new directions for recognizing disease-specific biochemical indicators. The findings support involvement of excitotoxicity and oxidative stress in the pathogenesis of PD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.