Abstract

The results of three-dimensional numerical simulation of heat transfer in the outer layers of magnetized neutron stars are presented. Determining the structure of the magnetic field on a neutron star surface is an important task of modern astrophysics. In the presence of strong magnetic fields, the medium becomes anisotropic, and the laws of heat conduction change. The tensor coefficient of thermal conductivity for magnetized degenerate plasma was obtained by Bisnovatyi-Kogan and Glushikhina by solving the Boltzmann equation with the Chapman–Enskog method. In this paper, the temperature distribution on the surface of a magnetized neutron star is obtained for magnetic fields of the dipolar and quadrupolar type, as well as for their superposition. To numerically solve the stationary temperature distribution problem in the outer layers of a magnetized neutron star, the basic (support) operator numerical method was extended to a three-dimensional case. The problem was solved on the grid which consists of tetrahedra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.