Abstract

Bolted bearing connections are one of the most important connections in some industrial structures, and manufacturers are always looking for a quick calculation model for a safe design. In this context, all the analytical and numerical models reduce the global study to the study of the most critical sector. Therefore, the main inputs for these models are the maximal equivalent contact load and the corresponding contact angle. Thus, a load distribution calculation model that takes all the important parameters, such as the stiffness of the supporting structure and the variation in the contact angle, into consideration is needed. This paper presents a 3D finite element (FE) simplified analysis of load distribution and contact angle variation in a slewing ball bearing. The key element of this methodology, which is based on the Hertz theory, is modeling the rolling elements under compression by nonlinear traction springs between the centers of curvature of the raceways. The contact zones are modeled by rigid shells to avoid numerical singularities. Each raceway curvature center is coupled to the corresponding contact zone by rigid shells. The main contribution of this method is not only the evaluation of the contact loads with a relatively reduced calculation time but also the variation in the contact angle from the deformed coordinates of the curvature centers. Results are presented for several loading cases: axial loading, turnover moment, and a combined loading of axial force and turnover moment. The influence of the most important parameters such as the contact angle, the stiffness of the bearings, and the supporting structure is discussed. Finally, a preliminary experimental validation is conducted on a standard ball bearing. The results presented in this paper seem encouraging. The FE study shows an important influence of several parameters and a good correlation with experimental results. Consequently, this model can be extended to other types of slewing bearings such as roller bearings. Moreover, it can be implemented in complex industrial structures such as cranes and lifting devices to determine the corresponding load distributions and contact angles and, consequently, the most critical sector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.