Abstract
Abstract Differential compaction is an inherent process in carbonate systems that is thought to produce early natural fractures prior to any significant burial. Such fractures can persist and can be major permeability pathways, including areas of minor tectonic overprint. We forward model differential compaction fracturing in a carbonate reservoir in effort to predict the location of fractures in the subsurface. 3D finite-element geomechanical models are created to simulate differential compaction fracturing at a carbonate platform scale (kilometers) and the smaller carbonate build-up scale (10s of meters) commonly present within carbonate platforms. Interpreted seismic surfaces of key reservoir horizons are used as an input for the platform-scale model. Geometry of carbonate build-up from an outcrop analog is used for the build-up scale models. In both type of models layers identified to be compaction prone are restored to their expected pre-compaction state. A simplified mechanical stratigraphy scheme is adopted to distribute mechanical properties within the models consistent with their expected pre-burial properties. Geomechanical modeling in this study was applied to a field which includes two carbonate platforms at different stratigraphic levels. Modeling results predict increased fracture intensity at the windward margin of the carbonate platform. This coincides with increased windward-leeward asymmetry of an underlying older platform. Increased fracture intensity is predicted at the center of the platform where the underlying older platform displays significantly less asymmetry. Predicted fracture locations over the platform top also correspond with the location of carbonate build-ups identified from seismic data. Fracture observations from image logs and indirectly from mud loss data within the upper platform are consistent with our modeling results. Predicted areas of greatest fracture intensity correspond with the location of wells with the highest fracture intensity observed from image logs. Build-up scale models suggest that the build-up shape exerts a major control on the resulting differential compaction fracture pattern. Elongate build-ups tend to produce fractures oriented parallel to their axes. Circular build-ups tends to produce radial fracture patterns. Fracture orientation from image logs along with build-up shape observed using the coherence seismic attribute are consistent with these findings. This study offers a process-based fracture modeling approach that can enhance the predictability of the location and orientations of natural fractures in carbonate reservoirs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.