Abstract
The accurate reconstruction of a human digital dental model represents a wide research area within the orthodontic field due to its importance for the customization of patient treatments. Usually, 3-D dental root geometries are obtained by segmenting tomographic data. However, concerns about radiation doses may be raised since tomographic scans produce a greater X-ray dose than conventional 2-D panoramic radiographs (PAN). The present work is aimed at investigating the possibility to retrieve 3-D shape of individual teeth by exposing the patient to the minimum radiation dose. The proposed methodology is based on adapting general CAD templates over patient-specific dental anatomy, which is reconstructed by integrating the optical digitization of dental plaster models with a PAN image. The radiographic capturing process is simulated through the Discrete Radon Transform (DRT) and performed onto the patient crowns geometry obtained by segmenting the digital plaster model. A synthetic PAN image is then reconstructed and used to integrate the radiographic data within the digitized plaster model, thus allowing to retrieve roots information which guide the CAD templates adapting over the patient anatomy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.