Abstract

Many modern aircraft components are made from carbon fiber reinforced polymer sandwich structures with two outer skins possessing high tensile and compressive strengths separated by a lightweight core that provides shear stiffness. However, the conventional manufacturing method involves a complicated and costly bonding process. This study used a continuous carbon fiber 3D printer to manufacture sandwich structures with honeycomb, rhombus, rectangle, and circle core shapes as a single piece. The functional properties of the sandwich structures were quantified by shape evaluations and three-point bending tests. Three-point bending tests showed maximum load and flexural modulus increased as effective density increased for all core shapes, but the rhombus core shape was the strongest. Because the mechanical properties depended on the core shape, continuous carbon fiber 3D printers can be used to flexibly design core shapes that satisfy the desired strength and stiffness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.