Abstract
The broad clinical use of synthetic vascular grafts for vascular diseases is limited by their thrombogenicity and low patency rate, especially for vessels with a diameter inferior to 6 mm. Alternatives such as tissue-engineered vascular grafts (TEVGs), have gained increasing interest. Among the different manufacturing approaches, 3D bioprinting presents numerous advantages and enables the fabrication of multi-scale, multi-material, and multicellular tissues with heterogeneous and functional intrinsic structures. Extrusion-, inkjet- and light-based 3D printing techniques have been used for the fabrication of TEVG out of hydrogels, cells, and/or solid polymers. This review discusses the state-of-the-art research on the use of 3D printing for TEVG with a focus on the biomaterials and deposition methods.
Highlights
For a broad spectrum of vascular diseases, the bypass of blocked blood vessels is performed using a vascular graft
The evidence of the remodeling process of the tissue-engineered vascular grafts (TEVGs) post-implantation has fostered the idea that biodegradable biomaterials may be appropriate if the vessel integrity is maintained for several weeks, while extracellular matrix (ECM) produced by the host cells replaces the scaffold material as it degrades, allowing the development of an autologous graft [12]
We address the use of 3D printing for the fabrication of TEVGs and describe various combinations of deposition techniques, biomaterials, and cells
Summary
For a broad spectrum of vascular diseases, the bypass of blocked blood vessels is performed using a vascular graft. The evidence of the remodeling process of the TEVG post-implantation has fostered the idea that biodegradable biomaterials may be appropriate if the vessel integrity is maintained for several weeks, while extracellular matrix (ECM) produced by the host cells replaces the scaffold material as it degrades, allowing the development of an autologous graft [12]. Other TEVGs development provided evidence of the feasibility of using bioresorbable scaffold [12] or decellularized biological matrices, such as the bioengineered human acellular vessel (HAV) [16] In this approach, human vascular smooth muscle cells (hVSMCs) were seeded into polyglycolic acid polymer scaffolds and subjected to pulsatile distension for 8 weeks before the removal of the cells with detergents, preserving the tubular structure composed of extracellular matrix proteins. The main techniques used for 3D printing of biological materials are inkjet, micro-extrusion and laser-assisted printing [23,24,25]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.