Abstract

We present here the design, fabrication and experimental demonstration of a composite woodpile structure for integral imaging and invisibility cloaking. The structure composed of two layers of 3D-printed woodpile structure and a designed screen beneath it. The 3D display capability is first demonstrated by projecting a real 3D image from the screen. An invisibility carpet cloak is then demonstrated to hide an object on the ground in the visible regime by projecting a 3D virtual image of the ground from a pyramidal-shape screen. Comparing to transformation-optics-based or metasurface-based carpet cloaks, the current cloak can be both easily fabricated in large-scale simply using 3D printing and has an ultra-thin thickness with only 1.4 mm comparing to the height of the object of 4.7 mm. A polar viewing angle up to 20° with an arbitrary azimuthal viewing angle can be obtained with the present cloak. Our approach enables a cost-effective way towards practical 3D-printed optical components using the straight-forward fused deposition modeling method, leading to potential applications in 3D displays, integral microscopy, smart windows and augmented reality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.