Abstract
ABSTRACTThe need for personalised and smart products drives the development of structural electronics with mass-customisation capability. A number of challenges need to be overcome in order to address the potential of complete free form manufacturing of electronic devices. One key challenge is the integration of conductive structures and components into 3D printed devices by combining different materials and printing techniques that have nearly incompatible printing conditions. In this paper, several methods to integrate electronic circuits and components into a 3D printed structure are discussed. The functional performance of the resulting structures is described. Structural parts were manufactured with a stereolithography-based 3D printing technique, which was interrupted to pick and place electronic components, followed by either direct writing or squeegee filling of conductive material. A thermal curing step was applied to enhance the bonding and improve the electrical performance. Optical micrography, 4-point resistance measurement and cross-sectional analysis were performed to evaluate functionality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.