Abstract

As a new rapid additive manufacturing technology that has emerged in recent years, 3D printing technology can realize the precise manufacturing of complex and flexible sensor structures. In this study, a sensor was fabricated by injecting silver nanowires (AgNWs) ethanol solution into stretchable polydimethylsiloxane (PDMS). The substrate was used in two design configurations through a 3D printing template method, i.e. “straight” and “wave”. Compared to the straight sensor, the structural design of the wave sensor could increase the stretch range and sensitivity. In particular, the stretch range increased by 26.1% and the sensitivity improved by 96.0%. The stretchable sensor was successfully applied in pronunciation recognition and gait detection. Therefore, the stretchable sensor is also expected to be further used in fields such as foldable phones and wearable physiological signal sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.