Abstract

ABSTRACT Ceramic-based absorbing composite is irreplaceable in high-temperature conditions. This work has fabricated a novel biomass–derived porous SiCnw/SiC composite for structure–function integrated electromagnetic wave (EMW) absorption through selective laser sintering (SLS) 3D printing and carbothermal reduction. SLS processed the biomass-derived wood precursor with unique porous microstructures. The structure–function properties were controlled by changing the SiO carbothermal reduction temperatures, which facilitated the growth of SiC nanowires for effective EMW absorption. The 3D printed porous SiCnw/SiC composite shows efficient EMW absorption abilities with a minimum reflection loss of −49.01 dB and an effective absorption bandwidth of 5.1 GHz. The bulk density and flexural strength of porous SiCnw/SiC composite are respectively 0.73 ± 0.001 g/cm3 and 6.21 ± 0.66 MPa. Despite a high open porosity of 75.58 ± 0.31%, the porous SiCnw/SiC composite demonstrates excellent thermal conductivities of 3.21∼4.99 W/(m·K) and superior fire-resistant ability. The 3D printed SiCnw/SiC composite integrates structure and functions, indicating wide applications in specific harsh environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.