Abstract

AbstractMicrobatteries with a very narrow footprint require a high areal capacity to supply sufficient energy to power electronics. Here, 3D architected microelectrodes with high areal loadings are manufactured by 3D direct ink writing and freeze‐drying techniques to achieve high areal capacity for lithium‐ion microbatteries. The elaborate design of electrode configurations and the freeze‐drying treatment lead to hierarchical pores, which enhance the penetration of electrolyte and the transport of Li+. Meanwhile, the designed configurations prompt carbon nanotubes (CNTs) to form an interconnected conductive network in the whole electrode, thereby promoting fast electron transfer. As a result, the freestanding 3D‐printed lithium iron phosphate (LFP) microelectrodes show superior rate capacity and cycle stability compared to those of electrodes prepared through coating. The LFP microelectrodes still deliver an ultrahigh areal capacity of 5.05 mAh cm−2 after 100 cycles even with a higher areal loading of 32 mg cm−2, exhibiting a high capacity retention rate of 96.6%. Moreover, the full microbatteries assembled with the 3D‐printed LFP and lithium titanate (LTO) microelectrodes show good electrochemical performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.