Abstract

We report the facile synthesis and 3D printing of a series of triblock copolymers consisting of soft and hard blocks and demonstrate that alkene pendant groups of the hard block can be covalently modified. The polymers are prepared using a salenCo(III)TFA/PPNTFA binary catalyst system and 1,2-propanediol as a chain transfer agent, providing an efficient one-pot, two-step strategy to tailor polymer thermal and mechanical properties. Thixotropic inks suitable for direct ink write printing were formulated by dissolving the block copolymers in organic solvent and dispersing NaCl particles. After printing, porous structures were produced by removing solvent and NaCl with water to give printed structures with surfaces that could be modified via UV-initiated thiol-ene click reactions. Alternatively, a tetra-thiol could be incorporated into the ink and used for cross-linking to give objects with high solvent resistance and selective degradability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.