Abstract
To address the remaining issue of poor cell immobilization and insufficient mass transfer in scaffold-based tissue engineering approach for future islet transplantation, we employed a macro-porous poly-l-lactide (PLLA) scaffold immobilizing mouse insulinoma cells and studied its function toward an implantable pancreatic tissue in 7-day perfusion culture. The murine pancreatic β cells could be immobilized in the PLLA scaffold at a high density of 107 cells per cm3 close to the estimated range in normal pancreas. The perfusion culture promoted the 3D cellular organization as observed with live/dead staining and histological staining. The insulin production was significantly enhanced in comparison with static 2D culture and 3D rotational suspension culture by two and six folds, respectively (p < 0.001). As enhanced insulin response was only observed where both the perfusion and 3D cellular organization were present, this could represent important elements in engineering a functional bioartificial pancreas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.