Abstract

This paper presents a new method for recognizing 3D objects based on the comparison of invariants of their 2D projection curves. We show that Euclidean equivalent 3D surfaces imply affine equivalent 2D projection curves that are obtained from the projection of cross-section curves of the surfaces onto the coordinate planes. Planes used to extract cross-section curves are chosen to be orthogonal to the principal axes of the defining surfaces. Projection curves are represented using implicit polynomial equations. Affine algebraic and geometric invariants of projection curves are constructed and compared under a variety of distance measures. Results are verified by several experiments with objects from different classes and within the same class.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.