Abstract

Concentrated Photovoltaic Thermal systems, integrating both photovoltaic and thermal technologies, have gained significant attention as a sustainable and efficient means of harnessing solar energy. This research paper investigates the performance of CPV/T systems by analysing four different collectors under diverse operating conditions. The collectors under scrutiny include Rectangular Channels, Trapezoidal Channel, Hexagonal honeycomb, and Chevron Pattern absorbers, each subjected to distinct parameter variations to comprehensively evaluate their efficiency and potential for integration into renewable energy systems. The study systematically examines the collectors' performance under varying environmental conditions, including 6 kWh/m2 solar irradiance, 24 oC ambient temperature, and 3 m/s wind speed. The impact of changing parameters such as velocity and fluid flow rate ranges from 20-30 kg/hr on the overall system efficiency is thoroughly analysed. Through numerical simulations and experimental validations, the paper aims to provide insights into the dynamic behaviour of each collector type and their suitability for different applications and geographical locations. The analytical result correlates with the numerical mathematical models to provide more convincing evidence that the acquired data is accurate. At a flow rate of 30 kg/hr, the overall efficiency is determined to be 49.3% for the rectangular channel absorber, outperforming hexagonal honeycomb (41.2%), chevron pattern (41.1%), and Trapezoidal channel (40.9%) absorbers. The simplicity and cost-effectiveness of the fabrication process for rectangular channel absorbers, achievable through standard manufacturing techniques such as etching or pressing into materials like copper, aluminium, or stainless steel, emerge as primary advantages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.