Abstract

At lower frequency regime, altering the surface structure modifies the characteristics of propagating effective surface plasmons (ESPs), particularly their interaction with light. Movement of an electron beam in the proximity of the surface of a structured metallic grating excite these ESPs, which due to existence of a velocity phase match, they are able to emit terahertz (THz) waves known as Smith–Purcell (SP) radiation. By introducing a femtosecond perturbation (a single electron bunch), the important characteristics of a desired grating are revealed. Through our 3-D investigations, we find the incoherent THz radiation frequency span, and moreover we confirm that the frequency of the ESP is always less than the minimum SP frequency. Additionally, we find that the maximum of signal amplitude is distributed around 90°, only if the grating width is comparable to the longest SP wavelength. Also we learned that by increasing the grating length, the magnitude and spectral resolution of the radiation increases too. In order to study the coherent (superradiant) radiation, we use a train of electron bunches with variable bunch-to-bunch distances, and we calculate the radiation angle of the coherent SP signal. Simulations on the generation of SP radiation at THz frequencies are performed with the help of the 3-D particle-in-cell (PIC) finite integral (FI) method, in which the results agree very well with previously reported 2-D simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.