Abstract

An atmospheric pressure DC transferred arc twin torch thermal plasma system has been characterized by 3D simulation in order to assess its potential for the synthesis of Cu nanoparticles from solid precursors. The numerical model also takes into account the non-negligible effect on process temperature of radiative losses, transport and thermodynamic properties of Cu vapour. In the frame of design-oriented simulation and optimization of the synthesis process, mean diameter and yield of the synthetized nanoparticles have been investigated for different current levels, gas flow rates, precursor feed rates and nanoparticles model. Results show that evaporation efficiency is considerably high even at precursor feed rates up to 25 kg d−1, while the presence of vortices inside the chambers causes a significative loss of nanoparticles to the reactor walls, with a detrimental effect to the yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.