Abstract

By placing active antennas in a 2D grid at a BS, 3D MIMO is considered as a promising and practical technique for 5G New Radio (NR). So far, 3D MIMO studies reported are mostly done with antenna elements from 32 up to 128 in the limited scenario at one frequency. To gain further insights into the 3D massive MIMO channel and performance, field measurements from 32 to 256 antenna elements at the transmitter and 16 antenna elements at the receiver are performed in three typical deployment scenarios, including outdoor to indoor, urban microcell, and urban macrocell at both 3.5 and 6 GHz frequencies with 200 MHz bandwidth. Based on the extracted channel information from measured data, power angle spectrum, root mean square angle spread, channel capacity, and eigenvalue spread have been studied. Several observations, including 3D MIMO channel spatial dispersive properties and multi-user performance varying with antenna number, scenario, and frequency are given. These findings can provide valuable experimental insights for efficient utilization of 3D MIMO with massive antenna elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.