Abstract

Three-dimensional (3-D) inversion technique has become an important and practical approach for magnetotelluric (MT) data interpretation. In this article, we developed a 3-D parallelized MT inversion scheme using the edge-based finite element method and applied the developed method to the newly collected MT data in the Xinjiang Luntai area. The distorted hexahedral element is adopted to incorporate topography into the forward modeling and inversion for complicated scenarios. We use the Gauss–Newton optimization method to minimize the objective functional for MT inversion. The developed algorithm is parallelized using MPI over frequencies and parallel direct solvers when solving the forward and adjoint problems for each frequency. We compare the performance of the least-square QR (LSQR) factorization and preconditioned conjugate gradient (PCG) solvers for the model update within each Gauss–Newton iteration and found that the LSQR solver is more stable. The developed inversion algorithm is validated using several synthetic models. Finally, we applied the inversion algorithm to the subsurface resistivity imaging in the Luntai area. The recovered geoelectric model from full 3-D inversion fits well with the known geological and geophysical information. The recovered model shows a low resistivity layer which may be caused by the salt strata. Besides, the inversion results reveal the movement tectonic in this survey area within a depth of 9 km.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.