Abstract

This research was aimed at presenting performance of 3-dimensional input convolutional neural networks for steady-state visual evoked potential classification in a wireless EEG-based brain-computer interface system. Overall performance of a brain-computer interface system depends on information transfer rate. Parameters such as signal classification accuracy rate, signal stimulator structure, and user task completion time affect information transfer rate. In this study, we used 3 types of signal classification methods that are 1-dimensional, 2-dimensional, and 3-dimensional input convolutional neural network. According to online experiment with using 3-dimensional input convolutional neural network, we reached average classification accuracy rate and average information transfer rate as 93.75% and 58.35 bit/min, respectively. This both results significantly higher than the other methods that we used in experiments. Moreover, user task completion time was reduced with using 3-dimensional input convolutional neural network. Our proposed method is novel and state-of-art model for steady-state visual evoked potential classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.