Abstract

Additive manufacturing of high-entropy alloys combines the mechanical properties of this novel family of alloys with the geometrical freedom and complexity required by modern designs. Here, a non-beam approach to additive manufacturing of high-entropy alloys is developed based on 3D extrusion of inks containing a blend of oxide nanopowders (Co3O4 + Cr2O3 + Fe2O3 + NiO), followed by co-reduction to metals, inter-diffusion and sintering to near-full density CoCrFeNi in H2. A complex phase evolution path is observed by in-situ X-ray diffraction in extruded filaments when the oxide phases undergo reduction and the resulting metals inter-diffuse, ultimately forming face-centered-cubic equiatomic CoCrFeNi alloy. Linked to the phase evolution is a complex structural evolution, from loosely packed oxide particles in the green body to fully-annealed, metallic CoCrFeNi with 99.6 ± 0.1% relative density. CoCrFeNi micro-lattices are created with strut diameters as low as 100 μm and excellent mechanical properties at ambient and cryogenic temperatures.

Highlights

  • 1234567890():,; Fabrication of engineering parts from high-entropy alloys (HEA) using additive manufacturing (AM) has been increasingly studied in the past five years[1,2,3]

  • We demonstrate an approach to AM of HEAs by 3D extrusion printing of inks containing a blend of Co3O4 + Cr2O3 + Fe2O3 + NiO nanometric powders, followed by coreduction and sintering to yield equiatomic Co-Cr-Fe-Ni, a prototype alloy for single-phase fcc high entropy alloys[4]

  • We study the phase and microstructural evolution throughout thermal processing, from extrusion-printed oxide to fully-densified HEA filaments

Read more

Summary

Introduction

1234567890():,; Fabrication of engineering parts from high-entropy alloys (HEA) using additive manufacturing (AM) has been increasingly studied in the past five years[1,2,3]. We demonstrate an approach to AM of HEAs by 3D extrusion printing of inks containing a blend of Co3O4 + Cr2O3 + Fe2O3 + NiO nanometric powders, followed by coreduction and sintering to yield equiatomic Co-Cr-Fe-Ni, a prototype alloy for single-phase fcc high entropy alloys[4].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.