Abstract
The lack of regenerative solutions for demyelination within the central nervous system motivates the development of strategies to expand and drive the bioactivity of the cells, including oligodendrocyte progenitor cells (OPCs), that ultimately give rise to myelination. In this work, we introduce a 3D hyaluronic acid (HA) hydrogel system to study the effects of microenvironmental mechanical properties on the behavior of OPCs. We tuned the stiffness of the hydrogels to match the brain tissue (storage modulus 200-2000 Pa) and studied the effects of stiffness on metabolic activity, proliferation, and cell morphology of OPCs over a 7 day period. Although hydrogel mesh size decreased with increasing stiffness, all hydrogel groups facilitated OPC proliferation and mitochondrial metabolic activity to similar degrees. However, OPCs in the two lower stiffness hydrogel groups (170 ± 42 and 794 ± 203 Pa) supported greater adenosine triphosphate levels per cell than the highest stiffness hydrogels (2179 ± 127 Pa). Lower stiffness hydrogels also supported higher levels of cell viability and larger cell spheroid formation compared to the highest stiffness hydrogels. Together, these data suggest that 3D HA hydrogels are a useful platform for studying OPC behavior and that OPC growth/metabolic health may be favored in lower stiffness microenvironments mimicking brain tissue mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.