Abstract

The basement of a rift sedimentary basin, often possessing smooth and nonsmooth shapes, is not easily recovered from gravity data by current inversion methods. We have developed a new 3D gravity inversion method to estimate the basement relief of a rift basin. In the inversion process, we have established the objective function by combining the gravity data misfit function, the known depth constraint function, and the model constraint function composed of the [Formula: see text]-norm and [Formula: see text]-norm, respectively. An edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for gravity data is adopted to recognize the discontinuous and continuous parts of the basin and combine the two inputs to form the final model constraint function. The inversion is conducted by minimizing the objective function by the nonlinear conjugate gradient algorithm. We have developed two applications using synthetic gravity anomalies produced from two synthetic rift basins, one with a single graben and one with six differently sized grabens. The test results indicate that the inversion method is a feasible technique to delineate the basement relief of a rift basin. The inversion method is also tested on field data from the Xi’an depression in the middle of the Weihe Basin, Shaanxi Province, China, and the result illustrates its effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.