Abstract

This paper studies matching of fragmented objects to recompose their original geometry. Solving this geometric reassembly problem has direct applications in archaeology and forensic investigation in the computer-aided restoration of damaged artifacts and evidence. We develop a new algorithm to effectively integrate both guidance from a template and from matching of adjacent pieces' fracture-regions. First, we compute partial matchings between fragments and a template, and pairwise matchings among fragments. Many potential matches are obtained and then selected/refined in a multi-piece matching stage to maximize global groupwise matching consistency. This pipeline is effective in composing fragmented thin-shell objects containing small pieces, whose pairwise matching is usually unreliable and ambiguous and hence their reassembly remains challenging to the existing algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.