Abstract
Scaffold-based lattice-engineered 3D DNA origami is a powerful and versatile technique for the rational design and build-up of arbitrarily structured and monodisperse DNA-based 3D nanoobjects. Relying on the unsurpassed molecular programmability of sequence-specific DNA hybridization, a long DNA single strand (termed scaffold) is assembled with many short single-stranded oligomers (termed staples), which organize the scaffold into a 3D lattice in a single step, thereby leading to 3D nanoparticulate structures of the highest precision in high yields. Applications of 3D DNA origami are increasingly wide-spread and interface with numerous fields of sciences, for example, anisometric or anisotropically functionalized nanoparticles, fundamental investigations of superstructure formation, biomedicine, (bio)physics, sensors, and optical materials. This Minireview discusses the fundamentals and recent advances from structure formation to selected applications, with a mission to promote cross-disciplinary exchange.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.