Abstract

This work investigated a coupled computational fluid dynamics and population balance modeling (CFD-PBM) approach to predict the hydrodynamic behavior of the complex gas–solid two-phase flow in a three-dimensional (3-D) polydisperse propylene polymerization fluidized bed reactors (FBRs). Four different drag models, namely Syamlal–O’Brien, Gidaspow, McKeen and EMMS, were incorporated into the CFD-PBM model for evaluating the different effect of drag force between the gas and solid phases. Simulation results revealed a significant effect of the drag model on gas–solid flow in polydisperse polymerization FBRs. It was found that (1) compared to Syamlal–O’Brien and Gidaspow drag models, McKeen and EMMS drag models could predict a lower bed height, a higher temperature and an obvious core-annulus structure in polymerization FBRs; (2) EMMS drag model outperforms the other three drag models with respect to pressure drop prediction; and (3) the drag coefficient had little influence on the evolution of Sauter number and particle-size distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.