Abstract

SummarySegmentation of single cells in microscopy images is one of the major challenges in computational biology. It is the first step of most bioimage analysis tasks, and essential to create training sets for more advanced deep learning approaches. Here, we propose 3D-Cell-Annotator to solve this task using 3D active surfaces together with shape descriptors as prior information in a semi-automated fashion. The software uses the convenient 3D interface of the widely used Medical Imaging Interaction Toolkit (MITK). Results on 3D biological structures (e.g. spheroids, organoids and embryos) show that the precision of the segmentation reaches the level of a human expert.Availability and implementation3D-Cell-Annotator is implemented in CUDA/C++ as a patch for the segmentation module of MITK. The 3D-Cell-Annotator enabled MITK distribution can be downloaded at: www.3D-cell-annotator.org. It works under Windows 64-bit systems and recent Linux distributions even on a consumer level laptop with a CUDA-enabled video card using recent NVIDIA drivers.Supplementary information Supplementary data are available at Bioinformatics online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.