Abstract
We present an efficient implementation of volumetric anisotropic image diffusion filters on modern programmable graphics processing units (GPUs), where the mathematics behind volumetric diffusion is effectively reduced to the diffusion in 2D images. We hereby avoid the computational bottleneck of a time consuming eigenvalue decomposition in ℝ 3 . Instead, we use a projection of the Hessian matrix along the surface normal onto the tangent plane of the local isodensity surface and solve for the remaining two tangent space eigenvectors. We derive closed formulas to achieve this and prevent the GPU code from branching. We show that our most complex volumetric anisotropic diffusion filters gain a speed up of more than 600 compared to a CPU solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Mathematics-theory Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.