Abstract

We present a hybrid 3D-2D algorithm for stabilizing 360° video using a deformable rotation motion model. Our algorithm uses 3D analysis to estimate the rotation between key frames that are appropriately spaced such that the right amount of motion has occurred to make that operation reliable. For the remaining frames, it uses 2D optimization to maximize the visual smoothness of feature point trajectories. A new low-dimensional flexible deformed rotation motion model enables handling small translational jitter, parallax, lens deformation, and rolling shutter wobble. Our 3D-2D architecture achieves better robustness, speed, and smoothing ability than either pure 2D or 3D methods can provide. Stabilizing a video with our method takes less time than playing it at normal speed. The results are sufficiently smooth to be played back at high speed-up factors; for this purpose we present a simple 360° hyperlapse algorithm that remaps the video frame time stamps to balance the apparent camera velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.