Abstract
In this paper, an ultra-low power CMOS voltage reference capable of operating at sub-1[Formula: see text]V input supply is proposed. Four transistors biased in weak inversion are used to generate the required complementary-to-absolute-temperature (CTAT) and proportional-to-absolute-temperature (PTAT) voltages of the proposed circuit. Self-biasing of nature of the proposed configuration in the form of operational amplifier (opamp)-free ensure nano-power operation and eliminate the need for lateral bipolar junction transistors (BJTs) and offset cancelation techniques. A prototype of the circuit is designed and simulated in a standard 0.18-[Formula: see text]m CMOS process. Post-layout simulation results show that the circuit generates a reference voltage of 494[Formula: see text]mV with temperature coefficient (TC) of 58.4[Formula: see text]ppm/∘C across [Formula: see text]C to 85∘C; while the consuming power is lowered to 3.48[Formula: see text]nW at the minimum supply of 0.8[Formula: see text]V. The line sensitivity is 0.7%/V for the supply voltages from 0.8[Formula: see text]V to 1.8[Formula: see text]V, whereas the power supply ripple rejection (PSRR) is [Formula: see text]49.06[Formula: see text]dB at 1[Formula: see text]Hz. Monte Carlo simulation results of the voltage reference show a mean value of 497.2[Formula: see text]mV with [Formula: see text]/[Formula: see text] of 1.7%, demonstrating the robustness of the generated reference voltage against the process variations and mismatch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.